GW9-10/630A Comutador de desconexão de corrente contínua de alta tensão Reinicialização automática instalada em linhas aéreas de energia para proteção
Descrição do produto:
Os interruptores de isolamento de alta tensão são componentes essenciais dos sistemas de transmissão e distribuição de energia,uma vez que permitem o isolamento de secções específicas da rede para trabalhos de manutenção ou reparaçãoPodem também ser utilizados para isolar secções da rede em caso de falha ou de outras condições anormais.
Esses interruptores são projetados para lidar com altas tensões e correntes, e são tipicamente construídos a partir de materiais duráveis e robustos, como aço inoxidável, alumínio ou cobre.Eles são projetados para suportar condições ambientais adversas, tais como temperaturas extremas, ventos fortes e chuvas fortes.
Existem vários tipos de interruptores de isolamento de alta voltagem, incluindo interruptores de air-break, interruptores imersos em óleo e interruptores isolados a gás.e funcionam usando um conjunto de contatos que se separam fisicamente quando o interruptor é abertoOs interruptores imersos em óleo são tipicamente utilizados em aplicações de alta tensão e são preenchidos com óleo para evitar arcos quando o interruptor é aberto.Os interruptores com isolamento a gás usam gás hexafluoreto de enxofre para isolar os contatos do interruptor, o que permite projetos de interruptores menores e mais compactos.
Os interruptores de isolamento de alta tensão devem ser operados e mantidos por pessoal qualificado e devidamente formado.Incluindo o uso de equipamento de protecção individual adequado e o seguimento de procedimentos de bloqueio/marcação para evitar a energia acidental do equipamentoA manutenção e os ensaios regulares dos interruptores de isolamento de alta tensão são igualmente importantes para assegurar que funcionam correctamente e são seguros de utilização.
Relação com o disjuntor de vácuo externo:
A relação entre o disjuntor de vácuo externo e o isolador de desconexão de alta tensão externo reside nas suas funções complementares no sistema elétrico:
Interrupção de circuito: O interruptor de vácuo é responsável por interromper o circuito elétrico durante o funcionamento normal ou em caso de falha.Ele atua como o principal meio de quebrar o fluxo de correnteEm contraste, o isolador de desconexão é usado para isolar o circuito da fonte de alimentação durante as atividades de manutenção ou reparação.Ele fornece uma camada adicional de segurança, abrindo fisicamente o circuito.
Coordenação: Nos sistemas de energia de alta tensão, o interruptor de vácuo e o isolador de desconexão são frequentemente coordenados para trabalhar juntos.O disjuntor é responsável por detectar falhas e desencadear para interromper o fluxo de corrente, enquanto o isolador de desconexão é usado para isolar fisicamente o circuito e fornecer uma indicação visível da desconexão.
Segurança e manutenção: O isolador de desconexão desempenha um papel crucial na garantia da segurança do pessoal de manutenção.O isolador de desconexão é operado para abrir o circuito e fornecer uma lacuna de ar visívelO interruptor de vácuo, por outro lado, protege o sistema durante o funcionamento normal e em caso de falhas.
1Quando o isolador elétrico HV está na posição fechada, os contatos do isolador estão em contacto entre si, permitindo que a corrente flua através do circuito.O isolador elétrico HV é fechado por operação manual ou remota do isolador, dependendo do tipo do isolador elétrico HV.
2Para isolar uma secção do sistema de energia, o isolador eléctrico HV deve ser aberto.Isso geralmente é feito manualmente ou remotamente operando o isolador para separar os contatos e interromper o fluxo de corrente através do circuito.
3Uma vez aberto o isolador elétrico HV, a secção do sistema de energia ligada ao isolador é isolada do resto do sistema.Isto permite que os trabalhos de manutenção ou reparação sejam realizados com segurança no circuito isolado.
4Quando os trabalhos de manutenção ou reparação estiverem concluídos, o isolador eléctrico HV pode ser fechado para restaurar a energia do circuito isolado.Isto é feito manualmente ou remotamente operando o isolador para conectar os contatos e restaurar o fluxo de corrente através do circuito.
Vantagem:
1Estrutura simples: O interruptor de isolamento é concebido com uma estrutura simples, tornando-o fácil de entender e operar.
Baixa manutenção: devido ao seu design e construção, o interruptor de isolamento requer manutenção mínima, reduzindo a necessidade de inspeções e reparos frequentes.
2. Alta linearidade de quebra e fechamento: O interruptor de isolamento tem uma excelente linearidade de quebra e fechamento, garantindo uma operação suave e fiável durante as operações de comutação.
3. Alta fiabilidade: O interruptor é construído para fornecer desempenho confiável, minimizando o risco de avarias ou falhas durante a operação.
4.Comparável às normas internacionais: o interruptor de isolamento da série GW9-12 ((W) atende ou excede o nível de produtos similares, tanto a nível nacional como internacional,assegurar a sua compatibilidade e competitividade no mercado.
Dicas de Segurança:
1.Realizar ensaios e manutenção de rotina do interruptor para garantir o seu bom funcionamento, incluindo o ensaio da resistência de isolamento do interruptor, a verificação do funcionamento dos bloqueios de segurança,e verificar se há aquecimento anormal ou vibrações.
2.Implementar um procedimento de bloqueio/classificação antes de realizar trabalhos de manutenção ou reparação do interruptor.Este procedimento envolve o bloqueio e a marcação do interruptor para evitar a energia acidental durante o trabalho, proporcionando uma camada adicional de segurança.
3.Fornecer formação adequada ao pessoal que irá operar ou trabalhar no interruptor.bem como os perigos potenciais associados à mudança.
4.Implementar um sistema de gestão da segurança abrangente que inclua auditorias regulares da segurança, avaliações de perigos e comunicação de incidentes.Esta abordagem proactiva à segurança ajuda a identificar e a combater os riscos potenciais antes de resultarem em acidentes ou ferimentos.
5Assegurar que existem sistemas de ventilação e de arrefecimento adequados para os interruptores de isolamento de alta tensão situados em espaços fechados ou confinados. 6.A ventilação adequada ajuda a dissipar o calor e evita que o interruptor aqueça demais, o que pode levar a avarias ou mesmo a incêndios.
Condição:
1A altitude não excede 1000 m.
2.Temperatura do ar ambiente: Máximo + 40'C; Mínimo:Área geral -30'C, Paramos -40'C;
3.A pressão do vento não excede 700 Pa. (correspondente a uma velocidade do vento de 34 m/s);
4A intensidade do terramoto não excede 8 graus.
5.A situação de trabalho é livre de vibrações violentas frequentes;
6O local de instalação do isolador de tipo comum deve ser mantido afastado de gases, depósitos químicos de fumaça, nevoeiro de sal, poeira
e outras matérias explosivas e corrosivas que afetem seriamente a capacidade de isolamento e condução do isolador
7. Isolador tipo à prova de poluição é aplicável a área de condução suja grave, no entanto, não deve ser qualquer matéria explosiva e matéria que cause fogo
Parâmetros técnicos:
Número de série. | Parâmetro | Unidade | Dados | |||||||||
1 | Voltagem nominal | kV | 12 | |||||||||
2 | Corrente nominal | Número do modelo. | (H) GW9-12 ((W)/630-20 | A | 630 | |||||||
(H) GW9-12(W)/1000-20 | 1000 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 1250 | |||||||||||
3 | 4s Corrente resistente a curto prazo | Número do modelo. | (H) GW9-12 ((W)/630-20 | kA | 50 | |||||||
(H) GW9-12(W)/1000-20 | 50 | |||||||||||
(H) GW9-12 ((W)/1250-31.5 | 80 | |||||||||||
4 | Nível de isolamento nominal | Ondas de relâmpago resistir tensão ((pico) | Polar-Terra (Positivo e negativo) |
kV | 75 | |||||||
Interfracção (Positivo e negativo) |
85 | |||||||||||
Frequência industrial resistência à tensão (1 min) (Valor efetivo) |
Ensaio em seco/ensaio molhado | Polar-Terra | 42 ((Seco) 34 ((Humidade) |
|||||||||
Interfracção | 48 ((Seco) | |||||||||||
48 ((Seco) | ||||||||||||
48 ((Seco) 40 ((Humidade) |
||||||||||||
5 | Resistência do circuito principal | μ Ω | 630 | |||||||||
1000 | ||||||||||||
1250 | ||||||||||||
6 | Tempo de vida útil mecânico | vezes | 50 | |||||||||
50 | ||||||||||||
80 |